1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
use clap::Subcommand;

#[derive(Subcommand)]
#[command(arg_required_else_help(true))]
pub enum Prealgebra {
    /// Finds all factor pairs for a positive integer.
    ///
    /// ## Example
    ///
    /// ### Input
    ///
    /// ```bash
    /// lz prealgebra factor-pairs 12
    /// ```
    ///
    /// ### Output
    ///
    /// ```bash
    /// The factor pairs of 12 are {(1, 12), (2, 6), (3, 4)}.
    /// ```
    ///
    /// ## Raw Output (use `-r` or `--raw`)
    ///
    /// ```bash
    /// {(1, 12), (2, 6), (3, 4)}
    /// ```
    FactorPairs {
        /// The positive integer to find factor pairs for.
        n: u32,
        /// Whether or not to return the raw output.
        #[arg(short = 'r', long)]
        raw: bool,
    },
    /// Finds all factors for a positive integer.
    ///
    /// ## Example
    ///
    /// ### Input
    ///
    /// ```bash
    /// lz prealgebra factors 12
    /// ```
    ///
    /// ### Output
    ///
    /// ```bash
    /// The factors of 12 are {1, 2, 3, 4, 6, 12}.
    /// ```
    ///
    /// ## Raw Output (use `-r` or `--raw`)
    ///
    /// ```bash
    /// {1, 2, 3, 4, 6, 12}
    /// ```
    Factors {
        /// The positive integer to find factors for.
        n: u32,
        /// Whether or not to return the raw output.
        #[arg(short = 'r', long)]
        raw: bool,
    },
    /// Finds all multiples of a positive integer in a given range.
    ///
    /// ## Example
    ///
    /// ### Input
    ///
    /// ```bash
    /// lz prealgebra multiples-in-range 3 10
    /// ```
    ///
    /// ### Output
    ///
    /// ```bash
    /// The multiples of 3 in the range [1, 10] are {3, 6, 9}.
    /// ```
    ///
    /// ## Raw Output (use `-r` or `--raw`)
    ///
    /// ```bash
    /// {3, 6, 9}
    /// ```
    MultiplesInRange {
        /// The positive integer to find multiples for.
        n: u32,
        /// The lower bound of the range to find multiples in.
        lower_bound: u32,
        /// The upper bound of the range to find multiples in.
        upper_bound: u32,
        /// Whether or not to return the raw output.
        #[arg(short = 'r', long)]
        raw: bool,
    },
    /// Finds all primes in a given range.
    ///
    /// ## Example
    ///
    /// ### Input
    ///
    /// ```bash
    /// lz prealgebra primes-in-range 1 10
    /// ```
    ///
    /// ### Output
    ///
    /// ```bash
    /// The primes in the range [1, 10] are {2, 3, 7, 5}.
    /// ```
    ///
    /// ## Raw Output (use `-r` or `--raw`)
    ///
    /// ```bash
    /// {2, 3, 7, 5}
    /// ```
    PrimesInRange {
        /// The lower bound of the range to find primes in.
        lower_bound: u32,
        /// The upper bound of the range to find primes in.
        upper_bound: u32,
        /// Whether or not to return the raw output.
        #[arg(short = 'r', long)]
        raw: bool,
    },
    /// Finds the prime factorization of a positive integer.
    ///
    /// ## Example
    ///
    /// ### Input
    ///
    /// ```bash
    /// lz prealgebra prime-factorization 12
    /// ```
    ///
    /// ### Output
    ///
    /// ```bash
    /// The prime factorization of 12 is {3: 1, 2: 2}.
    /// ```
    ///
    /// ## Raw Output (use `-r` or `--raw`)
    ///
    /// ```bash
    /// {3: 1, 2: 2}
    /// ```
    PrimeFactorization {
        /// The positive integer to find the prime factorization of.
        n: u32,
        /// Whether or not to return the raw output.
        #[arg(short = 'r', long)]
        raw: bool,
    },
    /// Determines if a positive integer is composite.
    ///
    /// ## Example
    ///
    /// ### Input
    ///
    /// ```bash
    /// lz prealgebra is-composite 12
    /// ```
    ///
    /// ### Output
    ///
    /// ```bash
    /// 12 is composite.
    /// ```
    ///
    /// ## Raw Output (use `-r` or `--raw`)
    ///
    /// ```bash
    /// true
    /// ```
    IsComposite {
        /// The positive integer to determine if it is composite.
        n: u32,
        /// Whether or not to return the raw output.
        #[arg(short = 'r', long)]
        raw: bool,
    },
    /// Determines if a positive integer is prime.
    ///
    /// ## Example
    ///
    /// ### Input
    ///
    /// ```bash
    /// lz prealgebra is-prime 12
    /// ```
    ///
    /// ### Output
    ///
    /// ```bash
    /// 12 is not prime.
    /// ```
    ///
    /// ## Raw Output (use `-r` or `--raw`)
    ///
    /// ```bash
    /// false
    /// ```
    IsPrime {
        /// The positive integer to determine if it is prime.
        n: u32,
        /// Whether or not to return the raw output.
        #[arg(short = 'r', long)]
        raw: bool,
    },
    /// Determines if a positive integer is a factor of another positive integer.
    ///
    /// ## Example
    ///
    /// ### Input
    ///
    /// ```bash
    /// lz prealgebra is-factor 3 12
    /// ```
    ///
    /// ### Output
    ///
    /// ```bash
    /// 3 is a factor of 12.
    /// ```
    ///
    /// ## Raw Output (use `-r` or `--raw`)
    ///
    /// ```bash
    /// true
    /// ```
    IsFactor {
        /// The positive integer to determine if it is a factor.
        n: u32,
        /// The positive integer to determine if it is a multiple.
        m: u32,
        /// Whether or not to return the raw output.
        #[arg(short = 'r', long)]
        raw: bool,
    },
    /// Determines if a positive integer is a multiple of another positive integer.
    ///
    /// ## Example
    ///
    /// ### Input
    ///
    /// ```bash
    /// lz prealgebra is-multiple 12 3
    /// ```
    ///
    /// ### Output
    ///
    /// ```bash
    /// 12 is a multiple of 3.
    /// ```
    ///
    /// ## Raw Output (use `-r` or `--raw`)
    ///
    /// ```bash
    /// true
    /// ```
    IsMultiple {
        /// The positive integer to determine if it is a multiple.
        n: u32,
        /// The positive integer to determine if it is a factor.
        m: u32,
        /// Whether or not to return the raw output.
        #[arg(short = 'r', long)]
        raw: bool,
    },
}

pub fn match_prealgebra(function: Option<Prealgebra>) {
    use ladderz::prealgebra::*;
    match function {
        Some(Prealgebra::FactorPairs { n, raw }) => match raw {
            true => println!("{:?}", get_factor_pairs(n)),
            false => println!("The factor pairs of {} are {:?}.", n, get_factor_pairs(n)),
        },
        Some(Prealgebra::Factors { n, raw }) => match raw {
            true => println!("{:?}", get_factors(n)),
            false => println!("The factors of {} are {:?}.", n, get_factors(n)),
        },
        Some(Prealgebra::MultiplesInRange {
            n,
            lower_bound,
            upper_bound,
            raw,
        }) => match raw {
            true => println!("{:?}", get_multiples_in_range(n, lower_bound, upper_bound)),
            false => println!(
                "The multiples of {} in the range [{}, {}] are {:?}.",
                n,
                lower_bound,
                upper_bound,
                get_multiples_in_range(n, lower_bound, upper_bound)
            ),
        },
        Some(Prealgebra::PrimesInRange {
            lower_bound,
            upper_bound,
            raw,
        }) => match raw {
            true => println!("{:?}", get_primes_in_range(lower_bound, upper_bound)),
            false => println!(
                "The primes in the range [{}, {}] are {:?}.",
                lower_bound,
                upper_bound,
                get_primes_in_range(lower_bound, upper_bound)
            ),
        },
        Some(Prealgebra::PrimeFactorization { n, raw }) => match raw {
            true => println!("{:?}", get_prime_factorization(n)),
            false => println!(
                "The prime factorization of {} is {:?}.",
                n,
                get_prime_factorization(n)
            ),
        },
        Some(Prealgebra::IsComposite { n, raw }) => match raw {
            true => println!("{:?}", is_composite(n)),
            false => println!(
                "{} is {}composite.",
                n,
                if is_composite(n) { "" } else { "not " }
            ),
        },
        Some(Prealgebra::IsPrime { n, raw }) => match raw {
            true => println!("{:?}", is_prime(n)),
            false => println!("{} is {}prime.", n, if is_prime(n) { "" } else { "not " }),
        },
        Some(Prealgebra::IsFactor { n, m, raw }) => match raw {
            true => println!("{:?}", is_factor(n, m)),
            false => println!(
                "{} is {}a factor of {}.",
                n,
                if is_factor(n, m) { "" } else { "not " },
                m
            ),
        },
        Some(Prealgebra::IsMultiple { n, m, raw }) => match raw {
            true => println!("{:?}", is_multiple(n, m)),
            false => println!(
                "{} is {}a multiple of {}.",
                n,
                if is_multiple(n, m) { "" } else { "not " },
                m
            ),
        },
        None => println!("Please provide a function to use."),
    }
}